Design Optimization Study of a Nonlinear Energy Absorber for Internal Combustion Engine Pistons

Author:

Dolatabadi N.1,Theodossiades S.1,Rothberg S. J.1

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, UK

Abstract

Piston impacts against the cylinder liner are the most significant sources of mechanical noise in internal combustion (IC) engines. Traditionally, the severity of impacts is reduced through the modification of physical and geometrical characteristics of components in the piston assembly. These methods effectively reduce power losses at certain engine operating conditions. Frictional losses and piston impact noise are inversely proportional. Hence, the reduction in power loss leads to louder piston impact noise. An alternative method that is robust to fluctuations in the engine operating conditions is anticipated to improve the engine's noise, vibration and harshness (NVH) performance, while exacerbation in power loss remains within the limits of conventional methods. The concept of targeted energy transfer (TET) through the use of nonlinear energy sink (NES) is relatively new and its application in automotive powertrains has not been demonstrated yet. In this paper, a TET device is conceptually designed and optimized through a series of parametric studies. The dynamic response and power loss of a piston model equipped with this nonlinear energy sink is investigated. Numerical studies have shown a potential in reducing the severity of impact dynamics by controlling the piston's secondary motion.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference50 articles.

1. Multi-Body Dynamics: Historical Evolution and Application;Proc. Inst. Mech. Eng. Part C,2000

2. Annoyance From Road Traffic Noise: A Review;J. Environ. Psychol.,2001

3. Elasto-Multi-Body Dynamics of Internal Combustion Engines With Thin Shell Elastohydrodynamic Journal Bearings,2002

4. Analysis of Noise Sources and Their Transfer Paths in Diesel Engines,1990

5. Engine Noise Due to Mechanical Impacts at Pistons and Bearings,1980

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3