Soot Modeling for Advanced Control of Diesel Engine Aftertreatment

Author:

Mulone V.1,Cozzolini A.2,Abeyratne P.2,Littera D.2,Thiagarajan M.2,Besch M. C.2,Gautam M.2

Affiliation:

1. Department of Mechanical Engineering, University of Rome Tor Vergata, via del Politecnico1, 00133 Rome, Italy; Fulbright Research Scholar, Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106 e-mail: ,

2. Mechanical and Aerospace Engineering ESB, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506-6106

Abstract

Diesel particulate filters (DPFs) are well assessed aftertreatment devices, equipping almost every modern diesel engine on the market to comply with today’s stringent emission standards. However, an accurate estimation of soot loading, which is instrumental to ensuring optimal performance of the whole engine-after-treatment assembly, is still a major challenge. In fact, several highly coupled physical-chemical phenomena occur at the same time, and a vast number of engine and exhaust dependent parameters make this task even more daunting. This challenge may be solved with models characterized by different degrees of detail (0-D to 3-D) depending on the specific application. However, the use of real-time, but accurate enough models, may be the primary hurdle that has to be overcome when confronted with advanced exhaust emissions control challenges, such as the integration of the DPF with the engine or other critical aftertreatment components (selective catalytic reduction or other NOx control components), or to properly develop model-based OBD sensors. This paper aims at addressing real time DPF modeling issues with special regard to key parameter settings, by using the 1-D code called ExhAUST (exhaust aftertreatment unified simulation tool), which was jointly developed by the University of Rome Tor Vergata and West Virginia University. ExhAUST is characterized by a novel and unique full analytical treatment of the wall that allows a highly detailed representation of the soot loading evolution inside the DPF porous matrix. Numerical results are compared with experimental data gathered at West Virginia University engine laboratory using a MY2004 Mack®MP7-355E, an 11 liter, 6-cylinder, inline heavy-duty diesel engine coupled to a Johnson Matthey CCRT diesel oxidation catalyst + CDPF, catalyzed DPF exhaust aftertreatment system. To that aim, the engine test bench was equipped with a DPF weighing system to track soot loading over a specifically developed engine operating procedure. Results indicate that the model is accurate enough to capture soot loading and back pressure histories with regard to different steady state engine operating points, without a need for any tuning procedure of the key parameters. Thus, the use of ExhAUST for application to advanced after-treatment control appears to be a promising tool at this stage.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A methodology for estimating the permeability of a soot deposit in a wall-flow diesel particulate filter;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2014-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3