A Computationally Efficient Methodology for Generating Training Data for a Transient Neural Network of a Tip-Jet Reaction Drive System

Author:

Kestner Brian K.1,Tai Jimmy C.M.1,Mavris Dimitri N.1

Affiliation:

1. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

Abstract

This paper presents a computationally efficient methodology for generating training data for a transient neural network model of a tip-jet reaction drive system for potential use as an onboard model in a model based control application. This methodology significantly reduces the number of training points required to capture the transient performance of the system. The challenge in developing an onboard model for a tip-jet reaction drive system is that the model has to operate over the whole flight envelope, to account for the different dynamics present in the system, and to adjust to system degradation or potential faults. In addition, the onboard model must execute in less time than the update interval of the controller. To address these issues, a computationally efficient training methodology and neural network surrogate model have been developed that captures the transient performance of the tip-jet reaction system. As the number of inputs to a neural network becomes large, the computational time needed to generate the number of training points required to accurately represent the range of operating conditions of the system may become quite large also. A challenge for the tip-jet reaction drive system is to minimize the number of neural network training points, while maintaining the high accuracy. To address this issue, a novel training methodology is presented which first trains a steady-state neural network model and uses deviations from steady-state operating conditions to define the transient portion of the training data. The combined results from both the transient and the steady-state training data can then be used to create a single transient neural network of the system. The results in this paper demonstrate that a transient neural network using this new computationally efficient training methodology has the potential to be a feasible option for use as an onboard real-time model for model based control of a tip-jet reaction drive system.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient Surrogate Modeling for Thermal Management Systems;AIAA Scitech 2020 Forum;2020-01-05

2. Investigations of tip-jet and exhaust jet development in a ducted fan;Chinese Journal of Aeronautics;2019-11

3. Effects of tip-jet on the performance of a ducted fan;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2019-09-13

4. Aerodynamic characteristics of a tip-jet fan with a large blade pitch angle;Aerospace Science and Technology;2019-08

5. Numerical investigations of ducted fan aerodynamic performance with tip-jet;Aerospace Science and Technology;2018-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3