Thermodynamics of Energy Storage by Melting Due to Conduction or Natural Convection

Author:

De Lucia M.1,Bejan A.1

Affiliation:

1. Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706

Abstract

This paper describes the most basic thermodynamic aspects of the process of energy storage by melting of a phase change material when the energy source is a stream of hot single-phase fluid. The first part of the paper considers the melting process ruled by pure conduction across the liquid phase, and the second part deals with the quasi-steady melting dominated by natural convection. The paper establishes the relationship between the total irreversibility of the melting process and design parameters such as the number of heat transfer units of the heat exchanger placed between the energy source and the phase change material, the duration of the melting process, and the position of the energy storage process on the absolute temperature scale. It is shown that the exergy transfer to the melting material is maximized when the melting temperature (Tm) equals the geometric average of the environment temperature (Te) and the temperature of the energy source (T∞), in other words when Tm=(TeT∞)1/2. This conclusion holds for both conduction-dominated melting and convection-dominated melting.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3