The Measured Energy Impact of Infiltration in a Test Cell

Author:

Claridge David E.1,Bhattacharyya Souvik1

Affiliation:

1. Energy Systems Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air—with the latent portion of the enthalpy difference sometimes neglected. Calorimetric measurements conducted on a small test cell with measured amounts of infiltration introduced under a variety of conditions show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated; changes as small as 20 percent of the calculated value have been measured in the cell. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE), ε, is introduced as a measure of the effectiveness of a building in “recovering” heat otherwise lost (or gained) due to infiltration. Measurements show that ε increases as: (a) flow rate decreases; (b) flow path length increases; (c) hole/crack size decreases. There is a clear correlation between large values of ε and large values of the exponent, n, so fan pressurization results may be useful in predicting ε for buildings.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3