An Experimental Study of Film Cooling Effectiveness Near the Leading Edge of a Turbine Blade

Author:

Salcudean M.1,Gartshore I.1,Zhang K.1,McLean I.1

Affiliation:

1. Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

A flame ionization technique based on the heat/mass transfer analogy has been used in an experimental investigation of film cooling effectiveness. The measurements were made over the surface of a turbine blade model composed of a semi-cylindrical leading edge bonded to a flat after-body. The secondary flow was injected into the boundary layer through four rows of holes located at ±15 and ±44 deg about the stagnation line of the leading edge. These holes, of diameter d, had a 30 deg spanwise inclination and a 4d spanwise spacing. Adjacent rows of holes were staggered by 2d, and perfect geometry symmetry was maintained across the stagnation line. Discharge coefficients and flow division between the 15 and 44 deg rows of holes have also been measured. The strong pressure gradient near the leading edge produces a strongly nonuniform flow division between the first (± 15 deg) and the second (± 44 deg) row of holes at low overall mass flow ratios. This produced a total cutoff of the coolant from the first row of holes at mass flow ratios lower than approximately 0.4, leaving the leading edge unprotected near the stagnation line. Streamwise and spanwise plots of effectiveness show that the best effectiveness values are obtained in a very narrow range of mass flux ratios near 0.4 where there is also considerable sensitivity to changes in Reynolds number. The effectiveness values deteriorate abruptly with decreasing mass flow ratios, and substantially with increasing mass flow ratios. Therefore, it was concluded that the cooling arrangement investigated has poor characteristics, and some suggestions are made for alternate designs.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3