Diesel Fuel Multiple Injection Effects on Emission Characteristics of Diesel Engine Mixed Ammonia Gas Into Intake Air

Author:

Niki Yoichi1,Nitta Yoshifuru2,Sekiguchi Hidenori3,Hirata Koichi3

Affiliation:

1. Power and Energy System Research Group, Marine Environment and Engine System Department, National Institute of Maritime, Port and Aviation Technology, Mitaka, Tokyo 1810004, Japan e-mail:

2. Mem. ASME Power and Energy System Research Group, Marine Environment and Engine System Department, National Institute of Maritime, Port and Aviation Technology, Mitaka, Tokyo 1810004, Japan

3. Power and Energy System Research Group, Marine Environment and Engine System Department, National Institute of Maritime, Port and Aviation Technology, Mitaka, Tokyo 1810004, Japan

Abstract

This study focuses NH3 as an alternative fuel for internal combustion engines, because NH3 is known as a H2 carrier and its combustion does not produce CO2 causing global warming. On the other hand, some reports show that unburned NH3 and N2O appear in exhaust gas, when NH3 is used as fuel for compression ignition or spark ignition engines. NH3 is toxic and N2O is one of the greenhouse gases. These emissions should not be emitted. These reports point out that exhaust gas after treatments and/or injection strategies can be effective to reduce these emissions. From our previous investigations, it was confirmed that NH3 and N2O were contained in the exhaust gas of a conventional diesel engine with NH3 gas mixed into the engine intake. In this study, NH3 combustion processes in the diesel engine were investigated from the experimental results. Based on the investigations, a pilot or postinjection was conducted to reduce emissions of NH3 and N2O. In this paper, first the experimental results of the combustion and exhaust emission characteristics on the conventional diesel engine with NH3 gas mixed into the engine intake are shown. NH3 and N2O emissions are then verified by analyzing the exhaust gas. Next, NH3 combustion processes in the diesel engine are considered from the experimental results to report on the effects of a pilot and postdiesel fuel injection on NH3 and N2O production processes. The experimental results suggest that the multiple diesel fuel injections would be one of the effective measures to reduce N2O and NH3 emissions on NH3 and diesel dual-fueled engine.

Funder

Japan Society for the Promotion of Science

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3