Synergy in Syngas Yield From Co-Pyrolysis of Cow and Chicken Manures

Author:

Goud Burra Kiran Raj1,Selim Osama M.2,Amano Ryoichi S.2,Gupta Ashwani K.1

Affiliation:

1. University of Maryland Department of Mechanical Engineering, , College Park, MD 20742

2. University of Wisconsin-Milwaukee Department of Mechanical Engineering, , 115 East Reindl Way, Glendale, WI 53212

Abstract

Abstract Manure waste from dairy, livestock, and poultry industries can pose significant challenges in their disposal due to their odor, nitrogen, phosphorous, and heavy metals contents, and pathogens. Existing disposal techniques like anaerobic digestion, although can provide biogas with energy output, is a slow process with significant carbon loss to CO2 and can also result in leaching. High-temperature pyrolysis can convert these wastes into syngas along with biochar which can be used for various applications. Thermochemical conversion needs to be feed-flexible, and operating it with manures from various animal sources such as poultry and dairy sectors can provide sustained operation, intensified process, and improved conversion throughput. So, we examined high-temperature co-pyrolysis of chicken and cow manures to understand the influence of their mixture fractions on the syngas components and char yield. Lab-scale semi-batch co-pyrolysis was carried out for cow and chicken manures at 900 °C with mixture fractions varying from 0 to 100%. Syngas analysis from these tests revealed the presence of synergistic enhancement of its components and in terms of syngas energy yield and carbon conversion, a 2:3 ratio of cow to chicken manure resulted in the most enhancement compared to the expected aggregate of pyrolyzing cow and chicken manures separately. This paper provides a detailed analysis of these syngas components from co-pyrolysis in comparison with separate pyrolysis to explore the advantages of blended feedstock toward an efficient, clean, and feed-flexible pathway for manure waste disposal and utilization.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference41 articles.

1. County-level estimates of nutrient inputs to the landsurface of the conterminous United States, 1982-2001

2. Life Cycle Assessment of Greenhouse Gas Emissions of Feedlot Manure Management Practices: Land Application Versus Gasification;Wu;Biomass Bioenergy,2013

3. Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990 to 2020. U.S. Environmental Protection Agency, EPA 430-R-22-003;EPA,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3