Measurement of Wall Deformation and Flow Limitation In a Mechanical Trachea

Author:

Walsh C.1,Sullivan P. A.2,Hansen J. S.2,Chen L.-W.2

Affiliation:

1. Institute of Biomedical Engineering, and Dept. of Electrical and Computer Engineering, University of Toronto

2. Institute for Aerospace Studies, University of Toronto

Abstract

A mechanical model of the human trachea is investigated experimentally. A modified version of an earlier model, it consists of a square sectioned rigid tube in which part of one wall is removed, and replaced by a prestretched flat latex membrane. Air is drawn from atmosphere through an inlet into the rigid upstream tube; it then flows through the flexible section and finally through a rigid section Into a plenum chamber where suction is applied. As the membrane collapses in response to flow, the transmural pressure and deflection are measured at the mid-point. These values are used in conjunction with a finite deformation membrane wall theory to determine the elastic constant in a nonlinear material constitutive equation. This equation is used to predict the tube law. Results show that the flow limits at the long wave speed predicted by this law. Thus it behaves as a conventional collapsible tube while having the advantage of a rational wall model.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Airflow limitation in a collapsible model of the human pharynx: physical mechanisms studied with fluid‐structure interaction simulations and experiments;Physiological Reports;2019-05

2. Control of Flow Limitation in Flexible Tubes;Journal of Mechanical Design;2016-10-03

3. FLUID FLOW IN DISTENSIBLE VESSELS;Clinical and Experimental Pharmacology and Physiology;2009-02

4. Flow-induced oscillation of collapsed tubes and airway structures;Respiratory Physiology & Neurobiology;2008-11

5. Experimental Studies of Collapsible Tubes;Flow Past Highly Compliant Boundaries and in Collapsible Tubes;2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3