Enhancement of Thermocapillary Effect in Heated Liquid Films for Large Waves at High Reynolds Numbers

Author:

Chinnov E. A.1

Affiliation:

1. S.S. Kutateladze Institute of Thermophysics, Novosibirsk State University, Novosibirsk 630090, Russia e-mail:

Abstract

The characteristics of the heated water film flowing down a vertical plate at Re = 150, 300, and 500 were studied. The fluorescence method was used for measuring the film thickness. The temperature field on the film surface was measured by an infrared scanner. The analysis of the temperature pulsations on the heated film surface was made. The high-frequency component of temperature pulsations faded at the bottom area of the heater. Part of the temperature perturbations (small waves) was removed from interrivulets regions (valleys) to the rivulets by transverse thermocapillary forces. At high heat flux, only largest waves with maximum ripple of temperature reached the lower edge of the heater. There is a decrease in the mean integral energy fluctuations of temperature in the interrivulets regions near the heater lower edge. In the heated regions between rivulets, the relative amplitude of large waves increases with decreasing average thickness (or local Reynolds number). The analysis of results obtained for large Reynolds numbers showed that the relative amplitudes of large waves in the regions between rivulets at high heat fluxes are much greater than those for small Reynolds numbers and in isothermal falling films. In the interrivulet zone, Marangoni number increases with a rise of the heat flux. The growth of relative amplitude of low-frequency waves in interrivulets regions helps prevent film rupture and crisis of heat transfer.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

1. Heat Transfer From a Small Heater to a Falling Liquid Film;Heat Transfer Res.,1996

2. Heat Transfer From a Local Heart Source to Subcooled Falling Liquid Film Evaporating in a Vapor–Gas Medium;Russ. J. Eng. Thermophys.,1997

3. Jet Formation in Gravitational Flow of a Heated Wavy Liquid Film;J. Appl. Mech. Tech. Phys.,2003

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3