Transition of Plastic Behavior From Single Crystal to Polycrystal Under Pure Tension, and the Effect of Multislip

Author:

Chiang C. R.1,Weng G. J.1

Affiliation:

1. Department of Mechanics and Materials Science, Rutgers University, New Brunswick, N.J. 08903

Abstract

Based on a series representation the tensile stress-strain relation of a polycrystal is derived explicitly in terms of the plasticity of its constituent grains. This derivation assumes Taylor’s linear isotropic hardening law for slip systems and Berveiller and Zaoui’s modification of Hill’s self-consistent relation for grain interactions. It is taken that Taylor’s theory implies equal shears for the active systems, and this assumption leads to a simple micro equation for each grain. With the aid of self-consistent relation the average of these micro equations readily gives rise to a macro one for the aggregate, which is given analytically in terms of crystalline structure νij, slip modulus h and the number of active systems n. At a given n it is shown that, although the behavior of a polycrystal under partial yielding is sensitive to the interaction, or self-consistent model selected, the asymptotic state under full yielding is not. This simple theory is also shown to be in line with the classical ones of Taylor, Bishop and Hill, Hershey and Kocks. Comparison with Jaoul’s experiments on the hardening modulus further suggests that most crystals tend to deform with 2∼4, but not 5, active slip systems in the fully plastic range.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3