Numerical Study of Transport and Reaction Phenomena in GaN Vapor Phase Epitaxy

Author:

Cai D.1,Zheng L. L.1

Affiliation:

1. State University of New York at Stony Brook, Stony Brook, NY

Abstract

A vapor phase epitaxy (VPE) system has been designed to grow high quality gallium nitride layers under the deposition temperature of 990°C and the pressure range of 200–800 Torr. For the better understanding of the deposition mechanism of GaN layers, a numerical model that is capable of describing multi-component fluid flow, gas/surface chemistry, conjugate heat transfer, thermal radiation, and species transport, has been developed to help in design and optimization of the epitaxy growth system. The vacuum area between heaters and reactor tube is simulated as a solid body with small thermal conductivity and totally transparent to radiative heat transfer. Simulation results were compared to the experimental data to examine the temperature distribution achieved inside the growth reactor. To optimize operating parameters, the reaction mechanism for GaN in the VPE system has been identified, and the comprehensive computational simulations have been performed to study the temperature distribution, species mixing process, ammonia decomposition process and GaN deposition rate distribution on the substrate. Parametric studies have been performed to investigate the effects of operational and geometric conditions, such as temperature, reacting/carrier gas flow rate and distance between the substrate and the nozzle, on species mixing process and GaN deposition uniformity. The relationship between gas flow rate and III/V ratio achieved on the substrate will be established.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3