Polymeric Hollow Fiber Heat Exchangers (PHFHEs): A New Type of Compact Heat Exchanger for Lower Temperature Applications

Author:

Zarkadas Dimitrios M.1,Li Baoan1,Sirkar Kamalesh K.1

Affiliation:

1. New Jersey Institute of Technology, Newark, NJ

Abstract

Plastic heat exchangers are characterized by an inferior thermal performance compared to their metal counterparts. Therefore, their usage is mainly limited to handling corrosive media or when ultra high purity is required, e.g., pharmaceutical industry. Polymeric Hollow Fiber Heat Exchangers (PHFHEs) have recently been proposed [1] as a new type of heat exchanger that can overcome these constraints and offer the same or better thermal performance than metallic shell and tube or plate heat exchangers while occupying a much smaller volume. In this paper we report our results for heat transfer in PHFHEs with both parallel and cross flow in the shell side of the device. Fibers made of polypropylene (PP) and polyetheretherketone (PEEK) were tested. In addition, steam condensation studies in PHFHEs are reported for the first time. The overall heat transfer coefficients achieved for water-water and water-brine systems are as high as 1400 Wm−2K−1. These values are higher than any value reported for plastic heat exchangers and comparable with commonly acceptable design values for metal shell and tube heat exchangers. Similar coefficients were obtained for steam condensation. Polymeric hollow fiber heat exchangers can also achieve high thermal effectiveness, large number of transfer units (NTU) and very small height of a transfer unit (HTU), if properly rated. If designed like commercial membrane contactors, they can achieve up to 12 transfer units in a single device, not longer than 60–70 cm! In addition, the conductance per unit volume PHFHEs achieved was up to one order of magnitude higher compared to metal heat transfer equipment. This superior thermal performance is also accompanied by considerably lower pressure drops. Therefore, the operation of PHFHEs will be characterized by a low operating cost. Combined with the much lower cost, lower weight and elimination of metal contamination polymer materials offer, it is obvious that PHFHEs constitute a potential substitute for metal heat exchangers on both thermal performance and economical grounds. Possible application fields include the food, pharmaceutical and biomedical industries as well as applications where corrosion resistant, light and very efficient devices are required, i.e., desalination, solar and offshore heat transfer applications.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3