Modification of Planck Black Body Emissive Power and Intensity in Particulate Media Due to Multiple and Dependent Scattering

Author:

Prasher Ravi1

Affiliation:

1. Intel Corporation, Chandler, AZ

Abstract

Dispersion relation for electromagnetic wave is obtained in particulate media using effective field approximation (EFA) and quasi crystalline approximation (QCA). Due to multiple and dependent scattering the density of states, phase velocity and group velocity of photons are modified. Modification of these parameters modifies the Planck black body equilibrium radiation intensity. This modification affects the temperature and the heat flux predictions in multiple and dependent scattering particulate media. Results show that EFA can accurately capture the dependence of density of states, phase velocity and the group velocity on volume fraction of scatterers whereas QCA can capture the dependence of effective attenuation as well as density of states, phase velocity and the group velocity. Comparisons of the temperature, heat flux, and effective attenuation are made between EFA, QCA and work done by C.L Tien and coworkers. Results show that heat flux and temperature predictions made by models in the literature for multiple and dependent scattering are not correct as these models do not take the modification of the equilibrium intensity into account. Finally we introduce a new model called Dependent Effective Field Approximation (DEFA) which accurately captures the effect of volume fraction on the equilibrium intensity, and effective attenuation. All relations derived in the paper are for spherical particles.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3