Interfacial Energy and Micelle Conditions of Ternary Mixtures for Improved Heat Transfer

Author:

Reynoso G.1,Marti´nez P.1,Reyes R.1

Affiliation:

1. Universidad de las Ame´ricas Puebla, Cholula, Pue., Me´xico

Abstract

The search for suitable mixtures as boiling fluids leads to the development of ternary liquid mixtures that could handle even higher heat fluxes than binary mixtures through the formation of stable bubble-micelles departing from the heater’s surface. The amount of experimental work for testing the combinations is reduced using the interfacial tension prediction capabilities of simulation software, although it is not possible to predict singularities in the interfacial tension behavior of the mixtures. The ethanol aqueous mixture shows a singularity in its interfacial tension value at 16% ethanol by weight. In this work was combined with glycols for enhancing boiling heat transfer by decreasing the mixture interfacial tension. Also, the effect of the surfactants Dodecyl Benzene Sodium Sulfonate (DBSS) and Sodium Lauryl Sulfonate (SLS) in the mixture interfacial tension was studied. The measurements of sessile drop contact angles of mixtures with added surfactant allowed finding the singularities in the surface tension values that are related to critical micelle concentrations and the increment in boiling heat transfer. The propilenglycol-ethanol-water mixture produced the lowest values of contact angles, while for the etilenglycol-ethanol-water mixtures no such reduction was obtained with the same amount of the glycol. The use of DBSS and SLS at their critical micelle concentration decreased further the interfacial tension of the propilenglycol ternary mixture to generate a mixture that could improve the convective heat transfer coefficient.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3