Numerical and Experimental Analysis for Laser Surface Densification of Plasma Sprayed Coatings

Author:

Wu J.1,Choi J.1,Zhang S.1,Hilmas G.1

Affiliation:

1. University of Missouri at Rolla, Rolla, MO

Abstract

Advanced ceramics, suitable to fabricate ultra-high temperature ceramic components for structural applications and thermal protection systems, are not easily prepared by the plasma spray technique due to their extremely high melting temperature. How to prepare the materials with high density is a challenging research task. In this study, applying a laser surface treatment technique for the densification of zirconium diboride, the influence of laser power and beam diameter on the microstructure and mechanical properties of the coatings are examined both numerically and experimentally. Using a two dimensional mathematical model, which was developed incorporating melting, solidification, and evaporation phenomena, the microstructural characteristics during solidification are predicted via tracking the solid-liquid interface. For the mathematical model, volume-of-fluid technique is incorporated to track the free surface, while the surface force as a body force instead of a boundary condition. Typical laser processing parameters have been obtained for the desired both porosity reduction and microstructure from the model and the predicted results are compared with the experimental results.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3