Experimental Investigations Into Mixed Convection About a Horizontal Cylinder: Part A — Heat Transfer Using Digital Speckle Pattern Interferometry

Author:

Egan Vanessa1,Dalton Tara1,Davies Mark R. D.1,Whelan Maurice2

Affiliation:

1. University of Limerick, Limerick, Ireland

2. European Commission Joint Research Center, Ispra, VA, Italy

Abstract

Mixed convection heat transfer is commonly found in many engineering applications and is particularly relevant to the cooling of electronic components but despite this, the physics of this heat transfer regime is not fully understood. This paper presents an experimental study into buoyancy opposing cross flow, a commonly found mixed convection regime. The experimental configuration comprised a long heated cylinder suspended in a glass walled enclosure. The airflow within the enclosure was controlled using a baffled axial fan to give Reynolds numbers in the range of 32–89. The mean Nusselt numbers were measured about the cylinder for Rayleigh numbers between 1.7E+04–4.0E+04. For the acquisition of full field data the optical techniques, digital speckle pattern interferometry (DSPI) and phase measurement interferometry (PMI), were employed. Buoyancy opposing cross flow created an unsteady flow field about the cylinder at low Reynolds numbers and steady state temperatures. DSPI enabled real-time interferograms to be recorded and results are presented in the form of instantaneous interferograms showing the high frequency fluctuations of the temperature field about the cylinder. Attention is focused on understanding the trend in mean heat transfer values resulting from an increased inertia force and thus providing a significant insight into unsteady mixed convection flow.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3