Comparison of Scattering Rates and Thermal Conductivity in Diamond Using Dispersion Curve Data

Author:

Kalisik Todd1,Majumdar Pradip1,Shafer John1

Affiliation:

1. Northern Illinois University, DeKalb, IL

Abstract

The understanding of the mechanism of thermal energy transfer in thin films ranging in thicknesses from micro-scale to nano-scale is becoming very important. Thin films must be modeled at the atomic level and this entails treating the heat transfer as vibrations in a crystal lattice. The concept of phonons can be used to model the vibrational energy of the crystal. Phonon scattering rates and thermal conductivity are investigated for Cubic C (diamond). Boundary scattering, Umklapp processes, and Normal processes are the mechanisms considered for heat flow resistance. The normal processes are included due to there indirect effect on resistance (through phonon redistribution). Three symmetry directions [001], [110], [111], and three polarizations for each direction in the first Brillouin zone are considered. The main purpose of the paper is to study the effect of the curvature of the phonon dispersion curves when computing the phonon scattering rates and thermal conductivity. A comparison of thermal conductivity for each polarization and symmetry direction is made between a continuum model, a linear curve fit and a polynomial curve fit of dispersion data. A comparison is also made between the scattering rates for each polarization, symmetry direction as well as the group velocity for each.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3