Research on State of Health Estimation of Lithium Batteries Based on Electrochemical Impedance Spectroscopy and CNN-VIT Models

Author:

Chang Chun1,Su Guangwei1,Cen Haimei1,Jiang Jiuchun23,Tian Aina1,Gao Yang3,Wu Tiezhou1

Affiliation:

1. Hubei University of Technology Hubei Key Laboratory for High Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, , Wuhan 430068 , China

2. Hubei University of Technology Hubei Key Laboratory for High Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, , Wuhan 430068 , China ;

3. Sunwoda Electronic Co., Ltd. , Shenzhen 518108 , China

Abstract

Abstract With the development of electric vehicles, the demand for lithium-ion batteries has been increasing annually. Accurately estimating the state of health (SOH) of lithium-ion batteries is crucial for their efficient and reliable use. Most of the existing research on SOH estimation is based on parameters such as current, voltage, and temperature, which are prone to fluctuations. Estimating the SOH of lithium-ion batteries based on electrochemical impedance spectroscopy (EIS) and data-driven approaches has been proven effective. In this paper, we explore a novel SOH estimation model for lithium batteries based on EIS and Convolutional Neural Network (CNN)-Vision Transformer (VIT). The EIS data are treated as a grayscale image, eliminating the need for manual feature extraction and simultaneously capturing both local and global features in the data. To validate the effectiveness of the proposed model, a series of simulation experiments are conducted, comparing it with various traditional machine learning models in terms of root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2). The simulation results demonstrate that the proposed model performs best overall in the testing dataset at three different temperatures. This confirms that the model can accurately and stably estimate the SOH of lithium-ion batteries without requiring manual feature extraction and knowledge of battery aging temperature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3