Study of Generation Mechanism of Three-Body Particles in Linear Tape Recording

Author:

Shi Baogui1,Sullivan J. L.2,Wild M. A.2,Saied S. O.2

Affiliation:

1. Fax: +44 (0)121-359-0156

2. Surface Science Research Group School of Engineering and Applied Science Aston University Birmingham, B4 7ET, United Kingdom

Abstract

A major cause of magnetic spacing losses in data tape systems is pole tip recession (PTR). This study is an investigation of PTR in a linear data tape recording system and identification of the mechanisms responsible for these effects, but the results have implications for any head where the tape bearing surface is Al2O3/TiC, AlTiC. Tape cycling experiments were performed using the linear tape open system as the experimental platform with metal particle tape. All experiments were conducted within a matrix of pressure and humidity, which encompassed the system operating extremes. Atomic force microscopy was used to analyze the surface topography of the heads. Auger electron spectroscopy and x-ray photoelectron spectroscopy were employed to analyze the chemical changes on the surface of the heads and tapes. Environment was found to have a significant influence on the head/tape interface. Head wear and PTR was highest at high temperature and humidity. Water vapor was found to transform the surface layers on the TiC grains in the tape-bearing surface to TiO2. This process results in the production of TiO2 fragments that become trapped in the recessed pole tip region, acting as three-body abrasive particles. The TiO2 present on the TiC grains and on the surface of heads increases with the water content after cycling against tapes. The hypothesis is supported by the presence of Ti on the poles.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wear-Durable Protective Overcoats for Functional Tape Heads;Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording;2017

2. Introduction;Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording;2017

3. Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: The role of enhanced interfacial bonding;Journal of Applied Physics;2015-01-28

4. Wear reduction through piezoelectrically-assisted ultrasonic lubrication;Smart Materials and Structures;2014-09-12

5. A study on the formation and structure of LTO head stains;Tribology International;2005-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3