Efficient Collision Detection Method for Flexure Mechanisms Comprising Deflected Leafsprings

Author:

Naves M.1,Aarts R. G. K. M.2,Brouwer D. M.1

Affiliation:

1. Chair of Precision Engineering, University of Twente, P.O. Box: 217, Enschede 7500 AE, The Netherlands e-mail:

2. Chair of Structural Dynamics, Acoustics & Control, University of Twente, P.O. Box: 217, Enschede 7500 AE, The Netherlands e-mail:

Abstract

When designing and optimizing spatial flexure mechanisms, it is hard to predict collision due to 3D motion and large deformations, which compromises the utilization of spatial freedom. A computationally efficient collision test is desirable to assure that feasible mechanism designs are found when algorithmically optimizing the shape of elastic mechanisms, which are prone to collision. In this paper, a method is presented to test for collision specifically suited for flexure mechanisms by taking advantage of the typical slender aspect ratio and shape of the elastic members. Hereby, an efficient collision test is obtained that allows for the computation of a quantitative value for the severeness of collision. This value can then be used to efficiently converge to collision free solutions without excluding good mechanism designs leading to improved mechanisms, which utilize the maximum spatial design freedom.

Funder

Stichting voor de Technische Wetenschappen

Publisher

ASME International

Subject

Mechanical Engineering

Reference25 articles.

1. Gunnink, K., Aarts, R., and Brouwer, D., 2013, “Performance Optimization of Large Stroke Flexure Hinges for High Stiffness and Eigenfrequency,” 28th Annual Meeting of the American Society for Precision Engineering (ASPE), Saint Paul, MN, pp. 20–25.

2. Building Block-Based Spatial Topology Synthesis Method for Large-Stroke Flexure Hinges;ASME J. Mech. Rob.,2017

3. Henein, S., Spanoudakis, P., Droz, S., Myklebust, L., and Onillon, E., 2003, “Flexure Pivot for Aerospace Mechanisms,” Tenth European Space Mechanisms and Tribology Symposium, pp. 285–288.

4. Design and Performance Optimization of Large Stroke Spatial Flexures;ASME J. Comput. Nonlinear Dyn.,2014

5. A Review on Compliant Joints and Rigid-Body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings;ASME J. Mech. Des.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3