Eddy Current-Based Vibration Suppression for Finish Machining of Assembly Interfaces of Large Aircraft Vertical Tail

Author:

Fan Wei1,Zheng Lianyu1,Ji Wei23,Zhao Xiong1,Wang Lihui3,Yang Yiqing1

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China e-mail:

2. AB Sandvik Coromant, Stockholm 12679, Sweden;

3. Department of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden e-mail:

Abstract

Assembly interface of aircraft vertical tail is a large thin-wall structure and made from titanium alloys, which causes easily machining vibration, deformation and undercutting in finish machining due to its low stiffness, low thermal conductivity, and high chemical activity. To address these problems, a novel eddy current damper for assembly interfaces machining (ECD-AIM) is proposed to suppress multimodal vibration in the machining of the assembly interfaces. Within the context, the mathematical model of damping performance of the damper is established based on the principle of electromagnetic induction, based on which a novel design of the damper is proposed, and optimized by considering the relationship between damping performance and the key components of the damper. Then, the dynamics model of the suppression system of the assembly interface machining is established, where the relationship between vibration velocity and damping performance of the damper is obtained by using numerical analysis and finite element simulation. Finally, the damping performance of the damper is validated in terms of the three configurations (no applied ECD-AIM, a single ECD-AIM, and dual ECD-AIMs) via a set of dynamic tests (impact tests and harmonic tests) and cutting tests. The test results demonstrate that the configuration of dual ECD-AIMs can guarantee stability and reliability of assembly interface machining. The proposed damper can provide a feasible solution for vibration suppression in a limited workspace.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3