A Multiple-Burner Approach to Passive Control of Multiple Longitudinal Acoustic Instabilities in Combustors

Author:

Sultanpur Supreeth S.1,Chakravarthy Satyanarayanan R.1

Affiliation:

1. Indian Institute of Technology Madras Department of Aerospace Engineering, , Chennai, TN 600036 , India

Abstract

Abstract Presently, passive methods of controlling combustion instability fall short when one considers stabilizing multiple acoustic modes. In this paper, we present a passive control approach based on the locations of the burners to stabilize multiple acoustic modes. The approach is demonstrated using linear stability analysis performed on a canonical open–open rectangular tube enclosing a flame. A linear flame model based on the kinematic description of the flame surface is used. A simultaneous solution method, as opposed to a segregated method, is developed to calculate the mean flow and to evaluate mode shapes and eigenvalues. The stability analysis is performed both on single and on multiple-burner combustors. In the latter case, the axial and transversal arrangement of burners considered preserves the net volumetric heat release rate and exit temperature. The problem of stabilizing the first three acoustic modes is cast as a multi-objective optimization problem for both types of combustors using the location(s) of the burner(s) as decision variable(s). We show that the use of multiple burners markedly increases the stability of the first three modes while not disturbing the combustor design parameters.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3