Affiliation:
1. The Pennsylvania State University Engineering Design, , 301 Engineering Unit B, University Park, PA 16802
Abstract
Abstract
Additive manufacturing (AM) is a rapidly growing technology within the industry and education sectors. Despite this, there lacks a comprehensive tool to guide AM novices in evaluating the suitability of a given design for fabrication by the range of AM processes. Existing design for additive manufacturing (DfAM) evaluation tools tend to focus on only certain key process-dependent DfAM considerations. By contrast, the purpose of this research is to propose a tool that guides a user to comprehensively evaluate their chosen design and educates the user on an appropriate DfAM strategy. The tool incorporates both opportunistic and restrictive elements, integrates the seven major AM processes, outputs an evaluative score, and recommends processes and improvements for the input design. This paper presents a thorough framework for this evaluation tool and details the inclusion of features such as dual-DfAM consideration, process recommendations, and a weighting system for restrictive DfAM. The result is a detailed recommendation output that helps users to determine not only “Can you print your design?” but also “Should you print your design?” by combining several key research studies to build a comprehensive user design tool. This research also demonstrates the potential of the framework through a series of user-based studies, in which the opportunistic side of the tool was found to have significantly improved novice designers’ ability to evaluate designs. The preliminary framework presented in this paper establishes a foundation for future studies to refine the tool’s accuracy using more data and expert analysis.
Funder
Directorate for Engineering
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献