Creation and Assessment of a Novel Design Evaluation Tool for Additive Manufacturing

Author:

Cayley Alexander1,Mathur Jayant1,Meisel Nicholas A.1

Affiliation:

1. The Pennsylvania State University Engineering Design, , 301 Engineering Unit B, University Park, PA 16802

Abstract

Abstract Additive manufacturing (AM) is a rapidly growing technology within the industry and education sectors. Despite this, there lacks a comprehensive tool to guide AM novices in evaluating the suitability of a given design for fabrication by the range of AM processes. Existing design for additive manufacturing (DfAM) evaluation tools tend to focus on only certain key process-dependent DfAM considerations. By contrast, the purpose of this research is to propose a tool that guides a user to comprehensively evaluate their chosen design and educates the user on an appropriate DfAM strategy. The tool incorporates both opportunistic and restrictive elements, integrates the seven major AM processes, outputs an evaluative score, and recommends processes and improvements for the input design. This paper presents a thorough framework for this evaluation tool and details the inclusion of features such as dual-DfAM consideration, process recommendations, and a weighting system for restrictive DfAM. The result is a detailed recommendation output that helps users to determine not only “Can you print your design?” but also “Should you print your design?” by combining several key research studies to build a comprehensive user design tool. This research also demonstrates the potential of the framework through a series of user-based studies, in which the opportunistic side of the tool was found to have significantly improved novice designers’ ability to evaluate designs. The preliminary framework presented in this paper establishes a foundation for future studies to refine the tool’s accuracy using more data and expert analysis.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3