Analysis on Electrochemical CO2 Reduction by Diamond Doping Technology

Author:

Zeng Xiangyong1,Zhao Yang1,Chen Naichao234,He Ping24

Affiliation:

1. School of Energy and Mechanical Engineering, Shanghai University of Electric Power , Shanghai 200090 , China

2. School of Energy and Mechanical Engineering, Shanghai University of Electric Power , Shanghai 200090 , China ;

3. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power , Shanghai 200090 , China ;

4. Shanghai Non-Carbon Energy Conversion and Utilization Institute , Shanghai 200240 , China

Abstract

Abstract Mitigating the massive emissions of greenhouse gases is one of the main measures taken to resolve the current growing climate problems. The electrochemical reduction of carbon dioxide to economically valuable chemical fuels has attracted the intensive attention of scholars. This review provides an overview of the application of conductive diamond in electrocatalytic reduction and outlines the improvement of electrochemical properties by employing metal particles to modify the surface. Meanwhile, the carbon-based electrode materials represented by glassy carbon and diamond-like carbon also have broad research value. Emphasis is placed on the electrochemical properties of boron-doped, transition metal modification, and co-doped diamond film electrodes with appropriate extensions. The carbon-chain compounds produced by the reduction reaction are also briefly described, mainly using formic acid and ethanol as examples, and focusing on the switchable selectivity of the multi-carbon products. In addition, the development directions of electrochemical reduction technology are prospected.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3