Efficient Visualization Strategies for Large-Scale Finite Element Models

Author:

Liangyin Xu1,Yunpeng Li1,Sheng Zhang1,Biaosong Chen2

Affiliation:

1. Department of Engineering Mechanics, State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116024, China

2. Department of Engineering Mechanics, State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116024, China e-mail:

Abstract

In this paper, an effective strategy is proposed to realize the smooth visualization of large-scale finite element models on a desktop computer. Based on multicore parallel and graphics processing unit (GPU) computing techniques, the large-scale data of a finite element model and the corresponding graphics data can be handled and rendered effectively. The proposed strategies mainly consist of four parts. First, a parallel surface extraction technology based on the dual connections of elements and nodes is developed to reduce the graphics data. Second, the OpenGL vertex buffer object (VBO) technology is used to improve the rendering efficiency after surface extraction. Third, the element-hiding and cut-surface functions are implemented to facilitate the observation of the interior of the meshes. Finally, the stream/filter architecture, which has the advantages of efficient computation and communication, is introduced to meet the needs of large-scale data processing and various visualization methods. These strategies are developed on the general visualization system SiPESC.Post. Using these strategies, SiPESC.Post implements high-performance display and real-time operation for large-scale finite element models, especially for models containing millions or tens of millions of elements. To demonstrate the superiority and feasibility of the presented strategies, large-scale numerical examples are presented, and the strategies are compared with several commercial finite element software systems and open-source visual postprocessing packages in terms of visualization efficiency.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Ministry of Science and Technology of the People's Republic of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3