Multi-Information Source Fusion and Optimization to Realize ICME: Application to Dual-Phase Materials

Author:

Ghoreishi Seyede Fatemeh1,Molkeri Abhilash2,Srivastava Ankit2,Arroyave Raymundo3,Allaire Douglas1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

2. Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843 e-mail:

3. Professor Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843 e-mail:

Abstract

Integrated Computational Materials Engineering (ICME) calls for the integration of computational tools into the materials and parts development cycle, while the Materials Genome Initiative (MGI) calls for the acceleration of the materials development cycle through the combination of experiments, simulation, and data. As they stand, both ICME and MGI do not prescribe how to achieve the necessary tool integration or how to efficiently exploit the computational tools, in combination with experiments, to accelerate the development of new materials and materials systems. This paper addresses the first issue by putting forward a framework for the fusion of information that exploits correlations among sources/models and between the sources and “ground truth.” The second issue is addressed through a multi-information source optimization framework that identifies, given current knowledge, the next best information source to query and where in the input space to query it via a novel value-gradient policy. The querying decision takes into account the ability to learn correlations between information sources, the resource cost of querying an information source, and what a query is expected to provide in terms of improvement over the current state. The framework is demonstrated on the optimization of a dual-phase steel to maximize its strength-normalized strain hardening rate. The ground truth is represented by a microstructure-based finite element model while three low fidelity information sources—i.e., reduced order models—based on different homogenization assumptions—isostrain, isostress, and isowork—are used to efficiently and optimally query the materials design space.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3