A Global Limit Load Solution for Plates With Embedded Off-Set Elliptical Cracks Under Combined Tension and Bending

Author:

Li Rongsheng1,Gao Zengliang1,Lei Yuebao1

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China

Abstract

A global limit load solution is derived in this paper for embedded off-set elliptical cracks in a plate under combined tension and bending, based on the net-section collapse principle. The new limit load solution is validated using 3D elastic-perfectly plastic finite element (FE) limit analyses. The results show that the limit load solution developed in this paper is conservative and close to the elastic-perfectly-plastic FE results. The global limit load solution is then compared with the limit load solution based on the rectangular crack assumption, showing that the difference between the two solutions is negligible as the ratio of crack length to the plate width is less than 0.25. However, the difference may become significant when the ratio approaches one.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference6 articles.

1. “Limit Load Solutions for Plates With Embedded Cracks Under Combined Tension and Bending,”;Lei;Int. J. Pressure Vessels Piping

2. “A Global Limit Load Solution for Plates With Semi-Elliptical Surface Cracks Under Combined Tension and Bending,”;Lei;ASME/JSME Pressure Vessels and Piping Conference

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3