Affiliation:
1. Department of Mechanical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208
Abstract
The predetection evolution of stress corrosion cracking has been examined as a necessary preliminary to effective detection of such cracks. Anodic dissolution (AD) and hydrogen embrittlement (HE) have been considered to calculate the stress corrosion crack (SCC) growth in AA7050-T6 for a surface-breaking crack with blunt tip in an aqueous environment. Since these processes are not completely deterministic, several advanced statistical methods have been used to introduce probabilistic considerations. Based on the data from designed computer experiments, the computer code developed by the authors (Lee et al., 2015, “A Comprehensive Analysis of the Growth Rate of Stress Corrosion Cracks,” Proc. R. Soc. A, 471(2178), p. 20140703) to conduct deterministic stress corrosion crack growth analysis has been represented by metamodels using Gaussian process regression. Through sensitivity analysis, important variables which need to be calibrated have been identified. The dynamic Bayesian network (DBN) model and Monte Carlo simulation (MCS) have been utilized to quantify uncertainties. Statistical parameters of input variables have been obtained by a machine learning technique. The calibrated model has been validated using Bayesian hypothesis testing. Since the DBN model yields a probability of detection (POD) comparable to the probability based on binary validation data, the probabilistic model with calibrated parameters is expected to well represent the growth of a stress corrosion crack. The results also show that the reliability largely depends on the accuracy of flaw detection methods and on the critical crack length.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献