Affiliation:
1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Abstract
Some applications of high-temperature superconductors where their radiative behavior is important, such as bolometers, optically triggered switches and gates, and space-cooled electronics, require the superconductor to be in the form of a very thin film whose radiative properties cannot be adequately represented by a semi-infinite analysis. Two properties of particular importance are the film absorptance and the combined film/substrate absorptance, which are crucial to the operation of many devices. Here, calculations of the spectral, normal-incidence absorptance of superconducting-state Y-Ba-Cu-O films on MgO substrates suggest that a decrease in the film thickness often leads to an increase in both the film and the film/substrate absorptance. Furthermore, both can exhibit a maximum at some optimal value of film thickness. Room-temperature experiments verify the qualitative features of the spectral film/substrate absorptance, indicating the assumption that the film is a smooth, continuous slab with a refractive index equal to that of well-aligned bulk Y-Ba-Cu-O is valid, at least in the normal state and for films as thin as 35 nm.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献