Affiliation:
1. Department of Engineering, Whittle Laboratory, University of Cambridge, CB3 0DY, Cambridge, United Kingdom
Abstract
Unlike Reynolds-averaged Navier–Stokes (RANS) models that need calibration for different flow classes, LES (where larger turbulent structures are resolved by the grid and smaller modeled in a fashion reminiscent of RANS) offers the opportunity to resolve geometry dependent turbulence as found in complex internal flows—albeit at substantially higher computational cost. Based on the results for a broad range of studies involving different numerical schemes, large eddy simulation (LES) models and grid topologies, an LES hierarchy and hybrid LES related approach is proposed. With the latter, away from walls, no LES model is used, giving what can be termed numerical LES (NLES). This is relatively computationally efficient and makes use of the dissipation present in practical industrial computational fluid dynamics (CFD) programs. Near walls, RANS modeling is used to cover over numerous small structures, the LES resolution of which is generally intractable with current computational power. The linking of the RANS and NLES zones through a Hamilton–Jacobi equation is advocated. The RANS-NLES hybridization makes further sense for compressible flow solvers, where, as the Mach number tends to zero at walls, excessive dissipation can occur. The hybrid strategy is used to predict flow over a rib roughened surface and a jet impinging on a convex surface. These cases are important for blade cooling and show encouraging results. Further results are presented in a companion paper.
Reference48 articles.
1. Klostermeier, C.
, 2008, “Investigation Into the Capability of Large Eddy Simulation for Turbomachinery Design,” Ph.D. thesis, University of Cambridge, School of Engineering.
2. Turbulence Modelling for Separated Flows With Anisotropy-Resolving Closures;Leschziner;Philos. Trans. R. Soc. London, Ser. A
3. Measurement and Computation of Heat Transfer in High-Pressure Compressor Drum Geometries With Axial Throughflow;Long;ASME J. Turbomach.
4. Navier Stokes Analysis Methods for Turbulent Jet Flows With Application to Aircraft Exhaust Nozzles;Georgiadis;Prog. Aerosp. Sci.
5. Propulsive Jets and Their Acoustics;Secundov;Philos. Trans. R. Soc. London, Ser. A
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献