Influence of Tube Orientation on Combined Free and Forced Laminar Convection Heat Transfer

Author:

Iqbal M.1,Stachiewicz J. W.2

Affiliation:

1. Sir George Williams University, Montreal, Canada

2. Department of Mechanical Engineering, McGill University, Montreal, Canada

Abstract

Combined free and forced convection inside inclined circular tubes is studied theoretically. The case considered is that of fully developed laminar flow with constant-pressure gradient and constant-heat flux. Fluid properties are considered constant except for the variation of density in the buoyancy terms. Upward flow only is considered. Velocity and temperature fields are calculated by perturbation analysis in terms of power series of Rayleigh numbers. A detailed analysis of the final equations is made to determine the range of values of nondimensional parameter such as Rayleigh and Reynolds numbers over which the mathematical results are valid. Nusselt numbers are calculated based on bulk temperature difference and in final form are also expressed in terms of power series of Rayleigh numbers. Rayleigh number appears to be the dominant parameter in equations of velocity and temperature fields and Nusselt number. However Rayleigh and Reynolds number product and Prandtl number also influence the equations independently. As the tube inclination varies from horizontal, the Nusselt number increases up to a maximum which may occur before the vertical position is reached. The angle at which this maximum occurs appears to be a function of Rayleigh, Reynolds, and Prandtl number, and in most instances lies between 20 and 60 deg of tube inclination.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3