Developing the Coaxial Dual-Pipe Heat Pipe for Applications on Heat Pipe Cooler

Author:

Ting Chen-Ching1,Chen Chien-Chih2

Affiliation:

1. Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 10608 Taiwan

2. Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei, 10608 Taiwan

Abstract

This article presents significant experimental data about the coaxial dual-pipe heat pipe which is invented by our CCT laboratory. The coaxial dual-pipe heat pipe is built-in an inner pipe in the adiabatic section of a common heat pipe. A common heat pipe is composed of three sections: the evaporator section at the one end; the condenser section at the other end; and the adiabatic section in between. The vapor and the liquid phases of the working fluid flow in opposite directions through the core and the wick, respectively. This special heat transfer behavior causes a common heat pipe to yield the discrete heat transfer property. In process, the vapor directly brings large amounts of heat from heat source and rapidly flows through the adiabatic section to the condenser section. This intelligent heat transfer technique lets the heat pipe yield extremely large thermal conductivity. Unfortunately, a heat pipe integrated with cooling fin in the adiabatic section has changed its original heat transfer property. The integrated cooling fin in the adiabatic section has in advance taken heat of the vapor away and caused the vapor to be condensed in the adiabatic section. Therefore, the vapor cannot reach the condenser section and the condenser section hence loses its cooling capability. In other words, the effective cooling length of a common heat pipe which is integrated with cooling fin in the adiabatic section is shortened. The coaxial dual-pipe heat pipe is built-in an inner pipe in the adiabatic section of a common heat pipe to avoid heat of the vapor to be earlier taken away and even condensed in the adiabatic section. Experimental study in this work first built a home-made square coaxial dual-pipe heat pipe integrated with outside isothermal cycling cooling water as the coaxial dual-pipe heat pipe cooler. The home-made square coaxial dual-pipe heat pipe has an observation window. It is convenient to observe change of the two-phase flow inside the heat pipe influenced by the outside cooling water. The results show that the new developed coaxial dual-pipe heat pipe cooler has kept the original heat transfer property of the bare heat pipe. The vapor has reached the condenser section.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference19 articles.

1. http://www.intel.com/cd/channel/reseller/apac/zht/products/desktop/processor/processors/core2extreme/ tech/99346.htm#table%202.

2. Life of LED-Based White Light Sources;Narendran;J. Disp. Technol.

3. Experimental Investigation of Silver Nano-Fluid on Heat Pipe Thermal Performance;Kang;Appl. Therm. Eng.

4. Steady-State Modeling and Testing of a Micro Heat Pipe;Babin;J. Heat Transfer

5. An Experimental Investigation of the Transient Response of a Water Heat Pipe;El-Genk;Int. J. Heat Mass Transfer

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3