Air-Breathing Hypersonic Cruise: Prospects for Mach 4–7 Waverider Aircraft

Author:

Blankson I. M.1

Affiliation:

1. Hypersonics Research Division, National Aeronautics and Space Administration, Washington, DC 20546

Abstract

There is currently a renewal of world-wide interest in hypersonic flight. Vehicle concepts being considered range from cruise missiles to SSTO and TSTO vehicles. The new characteristics of these vehicles are that they will be powered by air-breathing engines and have long residence times in the air-breathing corridor. In the Mach 4–7 regime, waverider aircraft are being considered as candidates for both long-range and short-range cruise missions, as hypersonic missiles, and as high-L/D highly maneuverable vehicles. This paper will discuss the potential for near-term and far-term application of air-breathing engines to the above-mentioned waverider vehicle concepts and missions. In particular, the cruise mission is discussed in detail and attempts are made to compare and contrast it with the accelerator mission. Past criticisms levied against waveriders alleging low volumetric efficiency, lack of engine/airframe integration studies, poor off-design performance, poor take-off and landing capability, have been shown by ongoing research to be unfounded. A discussion is presented of some of the technical challenges and ongoing research aimed at realizing such vehicles: from turboramjet and scramjet technology development, propulsion-airframe integration effects on vehicle performance, aeroservothermoelastic systems analysis, hypersonic stability and control with aeroservothermoelastic and propulsion effects, etc. A unique and very strong aspect of hypersonic vehicle design is the integration and interaction of the propulsion system, aerodynamics, aerodynamic heating, stability and control, and materials and structures. This first-order multidisciplinary situation demands the ability to integrate highly coupled and interacting elements in a fundamental and optimal fashion to achieve the desired performance. Some crucial technology needs are found in propulsion-airframe integration and its role in configuration definition, hypersonic boundary-layer transition and its impact on vehicle gross-weight and mission success, scramjet combustor mixing length and its impact on engine weight and, CFD (turbulence modeling, transition modeling, etc) as a principal tool for the design of hypersonic vehicles. Key technology implications in thermal management, structures, materials, and flight control systems will also be briefly discussed. It is concluded that most of the technology requirements in the Mach 4–7 regime are relatively conventional, making cited applications near-term, yet offering very significant advancements in aircraft technology.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3