Control Strategy Optimization of a Fuel-Cell Electric Vehicle

Author:

Paladini Vanessa1,Donateo Teresa1,de Risi Arturo1,Laforgia Domenico1

Affiliation:

1. Dipartimento di Ingegneria dell’Innovazione, Università di Lecce, via Arnesano, Lecce, 73100, Italy

Abstract

In the last decades, due to emission reduction policies, research focused on alternative powertrains among which electric vehicles powered by fuel cells are becoming an attractive solution. The main issues of these vehicles are the energy management system and the overall fuel economy. An overview of the existing solutions with respect to their overall efficiency is reported in the paper. On the bases of the literature results, the more efficient powertrain scheme has been selected. The present investigation aims at identifying the best control strategy to power a vehicle with both fuel cell and battery to reduce fuel consumption. The optimization of the control strategy is achieved by using a genetic algorithm. To model the powertrain behavior, an on purpose made simulation program has been developed and implemented in MATLAB/SIMULINK. In particular, the fuel cell model is based on the theory of Amphlett et al. (1995, “Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. II. Empirical Model Development,” J. Electrochem. Soc., 142(1)) whereas the battery model also accounts for the charge/discharge efficiency. The analyzed powertrain is equipped with an energy recovery system. During acceleration, power is demanded to the storage system, while during deceleration the battery is recharged. All the tested control strategies assume charge sustaining operation for the battery and that the fuel cell system has to work around its maximum efficiency. All the tested strategies have been validated on four driving cycles.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference17 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3