Study on Failure Prediction Methodology of Flexible Pipes Under Large Torsion Considering Layer Interaction

Author:

Wu Shanghua1,Yang Zhixun2,Yin Yuanchao1,Lu Qingzhen3,Chen Jinlong4,Yue Qianjin3,Yan Jun1,Gao Bo1

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, Dalian 116023, China

2. College of Mechanical and Electrical Engineering, Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin 150001, China

3. State Key Laboratory of Structural Analysis for Industrial Equipment, School of Ocean Science and Technology, Dalian University of Technology, No. 2 Dagong Road, Panjin 124221, China

4. Panjin Industrial Technology Institute, No. 2 Dagong Road, Panjin 124221, China

Abstract

Abstract Flexible pipes are distinctive multi-layer structures that are designed to resist different loads when they are utilized in severe deep-water environments. However, they lack a special structural layer to withstand torsion. Tensile armors mainly resist torque although they are designed to bear only tension with the consideration of torque balance. Especially, when a flexible pipe is loaded out from the cargo vessel into the installation vessel, twist angle could be accumulated at high level so that some failure modes will occur due to the large torsion. However, the failure mechanism is very complicated owing to the interaction effect between the different layers. First, the interaction mechanism between the layers of flexible pipes is analyzed under large torsion, and a few potential failure modes are identified, such as the tensile armors strength failure and inner structural layers collapse failure. In addition, to offer a quantitative prediction of the maximum allowable twist angle for flexible pipes, a mechanical model is set up to analyze their torsion behavior. The theoretical descriptions of the involved failure behaviors are investigated, and the theoretical methodology of the failure criteria for predicting the torsion resistance capacity is proposed. Finally, a numerical model is established through experimental verification. The numerical results illustrate that the theoretical prediction methodology is conservative, which can be used to predict the torsion resistance capacity of flexible pipes and to guide their operation and installation in engineering.

Funder

National High Technology Research and Development Program of China

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3