High Frequency Characteristics of the Near Wake and Vortex Past a Triangular Cylinder

Author:

Sun Lei1,Huang Yong1,Wang Xiwei1,Feng Xiang2,Xiao Wei3

Affiliation:

1. Collaborative Innovation Center of Advanced Aircraft-Engine, National Key Laboratory of Science and Technology, School of Energy and Power Engineering, Beihang University, Beijing 100191, China

2. Patent Examination Cooperation (Tianjin) Center of the Patent Office, CNIPA, Tianjin 300304, China

3. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 421000, China

Abstract

Abstract The flow past a triangular cylinder is one of the fundamental flows and widely utilized in flame stabilization and heat transfer. In this study, the near wake and vortex characteristics of the flow past an equilateral triangular cylinder are experimentally measured by a high frequency particle image velocimetry (PIV) system at 3 kHz. The triangular cylinder is installed in a wind tunnel with Reynolds numbers ranging from 10,700 to 17,700. The Reynolds-averaged and phase-averaged methods are utilized to analyze the flow field. Based on the flow fields, the length of the vortex formation region is about 1.5 times of the length of the equilateral triangle side. The residence time of a vortex in the vortex formation region is equal to a vortex shedding period. The stream wise velocity of the vortex core center downstream the vortex formation is about 0.8 times of the freestream velocity, which is slightly larger than the value about 0.7 for the flow past a circular cylinder at the same Reynolds number. The maximum tangential velocity at the periphery of the vortex core maybe occurs slightly in advance of the vortex reaching the boundary of the vortex formation region. The normalized lengths of the recirculation zone of the triangular cylinder keep nearly unchanged and are about 1.55 to 1.9 times of those of the circular cylinder at the same Reynolds number. The normalized normal wise instead of stream wise turbulence intensity has stronger effects on the distribution of the normalized turbulent kinetic energy.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3