Standard Representations for Sustainability Characterization of Industrial Processes

Author:

Mani Mahesh1,Larborn Jon2,Johansson Bjorn2,Lyons Kevin W.3,Morris K. C.3

Affiliation:

1. Dakota Consulting, Inc., Silver Spring, MD 20910; National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 e-mail:

2. Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden SE-412 96 e-mail:

3. National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 e-mail:

Abstract

Sustainability assessments are dependent on accurate measures for energy, material, and other resources used by the processes involved in the life cycle of a product. Manufacturing accounts for about 1/5 of the energy consumption in the U.S. Minimizing energy and material consumption in this field has the promise of dramatically reducing our energy dependence. To this end, ASTM International [1] has formed both a committee on Sustainability (E60) and a Subcommittee on Sustainable Manufacturing (E60.13). This paper describes ASTM’s new guide for characterizing the environmental aspects of manufacturing processes [2]. The guide defines a generic representation to support structured processes. Representations of multiple unit manufacturing processes (UMPs) can be linked together to support system-level analyses, such as simulation and evaluation of a series of manufacturing processes used in the manufacture and assembly of parts. The result is the ability to more accurately assess and improve the sustainability of production processes. Simulation is commonly used in manufacturing industries to assess individual process performance at a system level and to understand behaviors and interactions between processes. This paper explores the use of the concepts outlined in the standard with three use cases based on an industrial example in the pulp and paper industry. The intent of the use cases is to show the utility of the standard as a guideline for composing data to characterize manufacturing processes. The data, besides being useful for descriptive purposes, is used in a simulation model to assess sustainability of a manufacturing system.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference28 articles.

1. Subcommittee E60.13 on Sustainable Manufacturing;ASTM,2014

2. E3012-16 Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes;ASTM,2016

3. Manufacturing Process Information Models for Sustainable Manufacturing,2014

4. Characterizing Sustainability for Manufacturing Performance Assessment,2012

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3