Mechanical Properties and Fracture Resistance of 3D-Printed Polylactic Acid

Author:

Yadav Deepesh1,Jaya Balila Nagamani1

Affiliation:

1. Indian Institute of Technology Bombay Department of Metallurgical Engineering and Materials Science, , Bombay 400076, Maharashtra , India

Abstract

Abstract 3D printing is a layer-by-layer deposition process, which results in highly anisotropic structures and contains interfaces. Complex shapes manufactured by 3D printing carry defects. Complete elimination of these defects and interfaces is not possible, and these defects degrade the mechanical properties. In the present study, mechanical properties of printed dog bone samples are quantified as a function of building parameters, in particular, filling patterns, raster angle, and orientation of build direction with respect to that of loading, in polylactic acid (PLA). The tensile strength of 3D-printed PLA is the same for hexagonal and linear pattern filling when the build direction is along thickness and width, and failure was initiated at the defects in the structure, while better overall toughness is offered by hexagonal pattern filling. Build direction along specimen gauge length gives very low tensile strength and toughness, and failure happens between the printing layers. To minimize the defects especially near the grip section, cuboid samples were first deposited and micro-machined by laser into dog bone shape to perform tension test. Tensile strength and elastic modulus of micro-machined samples are surprisingly lower, while failure strain is highest among line filling printed samples. Damage resistance was quantified in terms of work of fracture, and hexagonal filling provided better damage resistance than line filling patterns for conditions of 0 deg raster angle with respect to the crack, whereas line filling with 45 deg and 90 deg raster angle tolerated damage better than hexagonal filling.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference39 articles.

1. Additive Manufacturing of Polyhydroxyalkanoates (PHAs) Biopolymers: Materials, Printing Techniques, and Applications;Mehrpouya;Mater. Sci. Eng. C,2021

2. Medical Applications for 3D Printing: Current and Projected Uses;Lee Ventola;Pharm. Ther.,2014

3. Rapid Prototyping for Architectural Models;Gibson;Rapid Prototyp. J.,2002

4. A Review of Additive Manufacturing;Wong;ISRN Mech. Eng.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3