The Effects of Swirling Flows in Entropy Wave Convection Through High Pressure Turbine Stage

Author:

Pinelli Lorenzo1,Marconcini Michele1,Pacciani Roberto1,Notaristefano Andrea2,Gaetani Paolo2

Affiliation:

1. University of Florence , Florence, Italy

2. Politecnico di Milano , Milano, Italy

Abstract

Abstract First stages of aeronautical high-pressure turbines are subjected to significant inlet distortions generated by the combustor system. These disturbances are characterized by velocity and temperature fluctuations convected downstream by the flow. Such perturbations are commonly defined as vorticity and entropy waves and interact with the turbine stages affecting the aerodynamic performance, the heat exchange and generating indirect noise. Moreover, the presence of a swirling flow highly influences the convection and migration of the entropy wave, thus its interaction with the stage. The paper presents an in-depth study of the impact of the swirling flows on the entropy wave evolution by means of experimental campaigns and numerical simulations. Experimental campaigns have been carried out at Politecnico di Milano where a high-pressure turbine rig was equipped with a novel combustor simulator able to generate entropy waves and swirl profiles. Numerical simulations have been performed at the University of Florence by applying time accurate simulation schemes, including incoming disturbances, implemented in the CFD TRAF code. Two different entropy waves (featuring frequencies of 10 and 110 Hz) injected in a counterclockwise swirling region at midspan have been analyzed at two clocking positions: passage aligned and vane aligned. An excellent agreement is found between experimental acquisitions and numerical results: both show an important reduction of the temperature fluctuations through the stage and highlight the effect of the swirling profile on secondary flows and blade wakes. The extensive comparison reported in the paper validates the numerical approach (based on URANS simulations post-processed by a dedicated filtering technique) which has been further applied to study the impact of swirling flows with an opposite rotation (clockwise). The broad numerical investigation combined with the extensive experimental campaign leads to a deeper understanding of the aerodynamic, thermal, and acoustic implications related to entropy wave evolution in a swirling flow highlighting the interaction phenomena and suggesting how to minimize the impact of entropy waves by comparing the results of the different injection positions and swirling flow directions.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direct numerical simulation of high-pressure turbine blades subject to burner-like inlet temperature variations;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3