Affiliation:
1. Mechanical Engineering Department, University of Wisconsin-Madison, Madison, Wis. 53706
Abstract
A hydraulic accumulator is often modeled as a gas spring following a polytropic process, but this fails to properly account for the dissipative effects of heat transfer which produce damping and phase shift in the dynamic behavior. A thermal time constant can properly characterize the heat transfer between the charge gas and the accumulator walls, and it is shown that for the linearized case the accumulator becomes equivalent to the Anelastic Model. The transfer function for the accumulator is derived, and the mathematical solution is presented for a hydraulic accumulator coupled to the inlet of a hydraulic motor where the load force is subject to a small, sinusoidal variation with time. Experimental data are presented to show that the accumulator can be accurately modeled using a thermal time constant, and the Anelastic Model would adequately describe the accumulator for the case of small perturbations.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献