Methodology of Turbulence Parameter Correction in Water-Lubricated Thrust Bearings

Author:

Deng Xin1,Gates Harrison1,Fittro Roger1,Wood Houston1

Affiliation:

1. Mem. ASME Rotating Machinery and Controls (ROMAC) Lab, Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904 e-mail:

Abstract

Oil-lubricated bearings are widely used in high-speed rotating machines such as those found in automotive industries and aerospace. However, environmental issues and risk-averse operations are resulting in the removal of oil and the replacement of all sealed oil bearings with reliable water-lubricated bearings. The low viscosity of water increases Reynolds numbers drastically and therefore makes water-lubricated bearings prone to turbulence effects. This requires finer meshes for finite element modeling when compared to oil-lubricated bearings as the low-viscosity fluid produces a very thin lubricant film. Analyzing water-lubricated bearings can also produce convergence and accuracy issues in traditional oil-based analysis codes. Fitting the velocity profile with experiments having a nondimensional wall distance y+ in a certain range results in Ng-optimized Reichardt's constants k and δ+. The definition of y+ can be used to approximate the first layer thickness calculated for a uniform mesh. On the condition that the y+ is fixed to that of a standard oil bearing for which an oil-bearing code was validated, the number of elements across the film thickness and coefficients used in the eddy-viscosity equation can be adjusted to allow for convergence with other fluids other than that which the traditional oil-bearing code was designed for. This study proposed a new methodology to preserve the y+ value to make water-lubricated thrust bearing models valid. A method for determining the required number of cross-film elements in water-lubricated bearings was found. The results of this study could aid in improving future designs and models of water-lubricated bearings.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3