A Critique on the Research Activities and Potential Benefits of Dual-Fuel Diesel Engines Run on Biogas and Oxygenated Liquid Fuels

Author:

Sarkar Achinta1,Saha Ujjwal K.2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India e-mail:

2. Professor Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India e-mail:

Abstract

The dual fuel concept of diesel engines is gaining popularity because of their ability to use alternative renewable gaseous fuels (natural gas, biogas, producer gas) and liquid fuels (biodiesel, alcohol, and others) simultaneously. The dual fuel mode (DFM) not only reduces the consumption of diesel or substitutes the diesel fuel, but there is an advantage of operating the engine in pure diesel mode (PDM) in case of shortage of gaseous primary fuel. The uses of renewable fuels in such engines have the positive impact on green ecosystem in terms of reduction in NOx and smoke emissions; however, there is the engine derating as performance penalty in comparison to engines operating under PDM. The most influential parameters in DFM engines are the type and flow rate of inducted gaseous fuel, fuel–air equivalence ratio (Φglobal), compression ratio (CR), and injection timing (IT). During the last few decades, the researchers have studied the effect of various parameters to improve the overall performance characteristics (performance, combustion, and emission) of DFM engines. This paper makes an in-depth analysis to unveil the physical characteristics of the crucial parameters of DFM engines with specific reference to the use of biogas with ternary blends (TB) of diesel, biodiesel, and ethanol. The paper addresses the issues on how the gaseous fuel flow rate, preheating of the intake charge, compression ratio, injection timing, and the type of oxygenated fuels dominate the overall performance characteristics.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3