A Simplified Method for Quantitative Reliability and Integrity Analysis of Steel Catenary Risers

Author:

Mousavi Mir Emad1,Reza Zaqie1,Upadhye Sanjeev1,Vijayaraghavan Vishnu1,Haverty Kevin1

Affiliation:

1. Aker Solutions, Houston, TX 77038

Abstract

Quantitative reliability and integrity analysis of steel catenary risers (SCRs) can provide important information about their safety and toward their cost-effective and optimal design. SCRs are one of the commonly used riser systems in offshore production stations. The consequence of an SCR failure is significant; however, the overall safety of the riser is typically not quantified. Especially, because of the uncertainties associated with environmental conditions and structural capacities, quantitative reliability methods can take advantage of available data and developments in computing technology to provide a strong basis for their reliable engineering decision making. This paper presents a simplified approach for assessing the strength and fatigue reliability of SCRs, accounting for the uncertainties with their yield strength and fatigue capacities as well as the environmental conditions. Moreover, the integrity-based optimal design of riser strength limit state for a target annual probability of failure is discussed. The fatigue reliability of the SCR system is also assessed in component and system levels. The proposed method is then applied to a typical SCR attached to a semisubmersible vessel under Gulf of Mexico (GOM) conditions. Results of dynamic (time-domain) analyses under various environmental conditions are used to quantify the SCR safety and integrity and to optimize its design for a target annual probability of strength failure. By estimating the riser system probability of strength and fatigue failure in its lifetime, the strength and fatigue integrity indices, and the optimality factors of the riser sections for the strength limit state, suggestions are provided to improve the riser design. For example, it was found that considering the two main limit states of strength and fatigue failure of the SCR system, a strength failure at the taper stress joint (TSJ) is the likely mode of failure in this riser system, which has a probability of 0.0035 in its 25 year lifetime.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3