Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane

Author:

Ai Weiguo1,Fletcher Thomas H.1

Affiliation:

1. Department of Chemical Engineering, Brigham Young University, Provo, UT 84602

Abstract

Numerical computations were conducted to simulate flash deposition experiments on gas turbine disk samples with internal impingement and film cooling using a computational fluid dynamics (CFD) code (FLUENT). The standard k-ω turbulence model and Reynolds-averaged Navier–Stokes were employed to compute the flow field and heat transfer. The boundary conditions were specified to be in agreement with the conditions measured in experiments performed in the BYU turbine accelerated deposition facility (TADF). A Lagrangian particle method was utilized to predict the ash particulate deposition. User-defined subroutines were linked with FLUENT to build the deposition model. The model includes particle sticking/rebounding and particle detachment, which are applied to the interaction of particles with the impinged wall surface to describe the particle behavior. Conjugate heat transfer calculations were performed to determine the temperature distribution and heat transfer coefficient in the region close to the film cooling hole and in the regions further downstream of a row of film cooling holes. Computational and experimental results were compared to understand the effect of film hole spacing, hole size, and TBC on surface heat transfer. Calculated capture efficiencies compare well with experimental results.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3