Quantitative Evaluation of Blood Damage in a Centrifugal VAD by Computational Fluid Dynamics

Author:

Song Xinwei1,Throckmorton Amy L.2,Wood Houston G.1,Antaki James F.3,Olsen Don B.4

Affiliation:

1. Mechanical and Aerospace Engineering Department, Virginia Artificial Heart Institute, University of Virginia, Charlottesville, VA USA

2. Biomedical Engineering Department, Virginia Artificial Heart Institute, University of Virginia, Charlottesville, VA USA

3. McGowan Center for Artificial Organ Development, University of Pittsburgh, Pittsburgh, PA USA

4. Utah Artificial Heart Institute, Salt Lake City, UT USA

Abstract

This study explores a quantitative evaluation of blood damage that occurs in a continuous flow left ventricular assist device (LVAD) due to fluid stress. Computational fluid dynamics (CFD) analysis is used to track the shear stress history of 388 particle streaklines. The accumulation of shear and exposure time is integrated along the streaklines to evaluate the levels of blood trauma. This analysis, which includes viscous and turbulent stresses, provides a statistical estimate of possible damage to cells flowing through the pump. Since experimental data for hemolysis levels in our LVAD are not available, in vitro normalized index of hemolysis values for clinically available ventricular assist devices were compared to our damage indices. This approach allowed for an order of magnitude comparison between our estimations and experimentally measured hemolysis levels, which resulted in a reasonable correlation. This work ultimately demonstrates that CFD is a convenient and effective approach to analyze the Lagrangian behavior of blood in a heart assist device.

Publisher

ASME International

Subject

Mechanical Engineering

Reference45 articles.

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3