Comparison Between Numerical and Experimental Dynamic Coefficients of a Hybrid Aerostatic Bearing

Author:

Amine Hassini Mohamed1,Arghir Mihai2,Frocot Manuel3

Affiliation:

1. Institut Pprime, UPR3346 CNRS, Université de Poitiers, Poitiers, 86962 France; Centre National d’Études Spatiales, CNES-DLA, Paris, 86962France e-mail:

2. Institut Pprime, UPR3346 CNRS, Université de Poitiers, Poitiers, 86962France e-mail:

3. Snecma Division Moteurs Spatiaux, Vernon, 27208France e-mail:

Abstract

Hybrid journal bearings have been considered for many years as a possible replacement for ball bearings in turbopumps used by the aerospace industry. Due to flow regimes dominated by inertia and due to the nature of the lubricant (cryogenic fluids), the prediction of the linearized dynamic coefficients in these bearings must be based on the compressible bulk-flow equations. Theoretical models based on these equations were validated for hybrid bearings working with water or for liquid or gas annular seals. Validations for hybrid compressible bearings are missing. Experimental data obtained for an air lubricated hybrid aerostatic bearing designed with shallow pockets were recently presented; the data consist of linearized dynamic coefficients obtained for rotation speeds up to 50 krpm and up to 7 bars feeding pressure. The present work introduces a consolidated numerical approach for predicting static and linearized dynamic characteristics. Theoretical predictions are based on bulk flow equations in conjunction with CFD analysis. It was found that, for a given feeding pressure, the value of the pressure downstream the orifice has a major influence on all results. Special care was then taken to describe the complex flow in the feeding system and the orifice. Three dimensional CFD was employed because the bulk-flow equations are inappropriate in this part of the bearing. The pressure downstream the orifice stemming from CFD results and the feeding pressure were next imposed in the bulk flow model and the equivalent area of the orifice was obtained from the numerical solution of the steady flow in the bearing. Since the pockets of the hybrid bearing are shallow, this equivalent area is considered as being the harmonic average of the orifice cross section area and of the cylindrical curtain area located between the orifice and the rotor. The comparisons between theoretical dynamic coefficients and experimental data validated this approach of the equivalent area of the orifice.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference26 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3