Affiliation:
1. Oakland University, Rochester, MI 48063
2. Software Support Corporation, Birmingham, MI
Abstract
This paper presents the results of an extension of an experimental and theoretical investigation of an unstable flow phenomenon that leads to self-sustained limit-cycle-type oscillations of large amplitude, and which, under certain conditions, can involve flow reversals. The influence of two-phase pressure drop is examined and shown to have a stabilizing effect on the instability. Inclusion of the two-phase pressure drop as part of the downstream throttling allows the utilization of a previously developed linearized analysis, based on the system mean void fraction model, to predict successfully the experimentally observed stability boundary.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献