Adhesive Bond Stresses and Strains at Discontinuities and Cracks in Bonded Structures

Author:

Hart-Smith L. J.1

Affiliation:

1. Structures Subdivision, Douglas Aircraft Company, McDonnell Douglas Corporation, Long Beach, Calif.

Abstract

This paper presents analysis procedures to be used for analyzing adhesively bonded structures containing cracks or discontinuities in the metal elements. The analyses are performed for a range of disbonds in each of four basic problems for stiffened structures: (1) stiffener broken at one station or with a finite length removed, sheet intact, (2) stiffener intact, sheet completely broken, (3) one-bay sheet crack, stiffeners intact, and (4) two-bay sheet crack, stiffener intact. Separate failure modes of disbond under shear loads, stiffener yield, and sheet fast fracture are investigated. The solutions are essentially planar (two-dimensional) and such three-dimensional effects as stiffener or sheet bending and peel stresses in the adhesives are not accounted for. The paper contains parametric studies for the governing variables and excellent agreement with test is demonstrated for the available test data (one-bay sheet crack). The analyses are approximate and not of universal applicability, but are simple to use with either pocket electronic calculators or digital computers. Known limitations of the theory are confined to situations in which the adhesive stresses are small and widespread rather than high and concentrated in a small identifiable zone adjacent to the discontinuity. The conconclusion drawn from the examples investigated is that disbonds can be initiated relatively easily at discontinuities in the metal structural elements, because the bond is very stiff, and that care is needed in proportioning the structural elements to control this potential problem. The analyses indicate also that the initial disbond is usually self-arresting and is not catastrophic. Higher loads are usually needed to propagate the disbond and, eventually, induce complete failure which is triggered by stiffener yield or fast fracture of the sheet at the crack tips. The sample cases point to the need to account for adhesive plasticity, stiffener yielding, and changes in load path as disbonds propagate.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3