Affiliation:
1. Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
Abstract
A model for calculating the static friction coefficient of contacting real (rough) surfaces in the presence of very thin liquid films (sub-boundary lubrication) is developed. The liquid has a very high affinity for the surfaces and its thickness is of the order of the surface roughness average. An extension of the Greenwood and Williamson (GW) asperity model and an improved Derjaguin, Muller and Toporov (DMT) adhesion model are utilized for calculating the contact and adhesion forces, respectively. The effects of the liquid film thickness and the surface topography on the static friction coefficient are investigated. A critical film thickness is found above which the friction coefficient increases sharply. The critical thickness depends on the surface roughness and the external normal load. This phenomenon is more profound for very smooth surfaces and small normal loads, in agreement with published experimental work on magnetic hard disk interfaces.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献